13,966 research outputs found

    Rich variety of defects in ZnO via an attractive interaction between O-vacancies and Zn-interstitials

    Full text link
    As the concentration of intrinsic defects becomes sufficiently high in O-deficient ZnO, interactions between defects lead to a significant reduction in their formation energies. We show that the formation of both O-vacancies and Zn-interstitials becomes significantly enhanced by a strong attractive interaction between them, making these defects an important source of n-type conductivity in ZnO.Comment: 12 pages, 4 figure

    Stochastic Reinforcement Learning

    Full text link
    In reinforcement learning episodes, the rewards and punishments are often non-deterministic, and there are invariably stochastic elements governing the underlying situation. Such stochastic elements are often numerous and cannot be known in advance, and they have a tendency to obscure the underlying rewards and punishments patterns. Indeed, if stochastic elements were absent, the same outcome would occur every time and the learning problems involved could be greatly simplified. In addition, in most practical situations, the cost of an observation to receive either a reward or punishment can be significant, and one would wish to arrive at the correct learning conclusion by incurring minimum cost. In this paper, we present a stochastic approach to reinforcement learning which explicitly models the variability present in the learning environment and the cost of observation. Criteria and rules for learning success are quantitatively analyzed, and probabilities of exceeding the observation cost bounds are also obtained.Comment: AIKE 201

    An Autoignition Study of iso-Butanol: Experiments and Modeling

    Full text link
    The autoignition delays of iso-butanol, oxygen, and nitrogen mixtures have been measured in a heated rapid compression machine (RCM). At compressed pressures of 15 and 30 bar, over the temperature range 800-950 K, and for equivalence ratio of ϕ\phi = 0.5 in air, no evidence of an NTC region of overall ignition delay is found. By comparing the data from this study taken at ϕ\phi = 0.5 to previous data collected at ϕ\phi = 1.0 (Weber et al. 2013), it was found that the ϕ\phi = 0.5 mixture was less reactive (as measured by the inverse of the ignition delay) than the ϕ\phi = 1.0 mixture for the same compressed pressure. Furthermore, a recent chemical kinetic model of iso-butanol combustion was updated using the automated software Reaction Mechanism Generator (RMG) to include low- temperature chain branching pathways. Comparison of the ignition delays with the updated model showed reasonable agreement for most of the experimental conditions. Nevertheless, further work is needed to fully understand the low temperature pathways that control iso-butanol autoignition in the RCM.Comment: 6 pages, 4 figures, 8th US National Combustion Meetin

    Double resonance in the infinite-range quantum Ising model

    Full text link
    We study quantum resonance behavior of the infinite-range kinetic Ising model at zero temperature. Numerical integration of the time-dependent Schr\"odinger equation in the presence of an external magnetic field in the zz direction is performed at various transverse field strengths gg. It is revealed that two resonance peaks occur when the energy gap matches the external driving frequency at two distinct values of gg, one below and the other above the quantum phase transition. From the similar observations already made in classical systems with phase transitions, we propose that the double resonance peaks should be a generic feature of continuous transitions, for both quantum and classical many-body systems.Comment: 4 pages, 5 figure

    Glacial cycles drive variations in the production of oceanic crust

    Full text link
    Glacial cycles redistribute water between oceans and continents causing pressure changes in the upper mantle, with consequences for melting of Earth's interior. Using Plio-Pleistocene sea-level variations as a forcing function, theoretical models of mid-ocean ridge dynamics that include melt transport predict temporal variations in crustal thickness of hundreds of meters. New bathymetry from the Australian-Antarctic ridge shows significant spectral energy near the Milankovitch periods of 23, 41, and 100 ky, consistent with model predictions. These results suggest that abyssal hills, one of the most common bathymetric features on Earth, record the magmatic response to changes in sea level. The models and data support a link between glacial cycles at the surface and mantle melting at depth, recorded in the bathymetric fabric of the sea floor.Comment: 30 pages, 6 figures (including supplementary information). Resubmitted to Science on 12 December 201

    Economic cost of tobacco use in India, 2004

    Get PDF
    ObjectiveTo estimate the tobacco-attributable costs of diseases separately for smoked and smokeless tobacco use in India.MethodsThe prevalence-based attributable-risk approach was used to estimate the economic cost of tobacco using healthcare expenditure data from the National Sample Survey, a nationally representative household sample survey conducted in India in 2004. Four major categories of tobacco-related disease-tuberculosis, respiratory diseases, cardiovascular diseases and neoplasms-were considered.ResultsDirect medical costs of treating tobacco related diseases in India amounted to 907millionforsmokedtobaccoand907 million for smoked tobacco and 285 million for smokeless tobacco. The indirect morbidity costs of tobacco use, which includes the cost of caregivers and value of work loss due to illness, amounted to 398millionforsmokedtobaccoand398 million for smoked tobacco and 104 million for smokeless tobacco. The total economic cost of tobacco use amounted to 1.7billion.Tuberculosisaccountedfor181.7 billion. Tuberculosis accounted for 18% of tobacco-related costs (311 million) in India. Of the total cost of tobacco, 88% was attributed to men.ConclusionsThe cost of tobacco use was many times more than the expenditures on tobacco control by the government of India and about 16% more than the total tax revenue from tobacco. The tobacco-attributable cost of tuberculosis was three times higher than the expenditure on tuberculosis control in India. The economic costs estimated here do not include the costs of premature mortality from tobacco use, which is known to comprise roughly 50% to 80% of the total economic cost of tobacco in many countries

    Nearly Massless Electrons in the Silicon Interface with a Metal Film

    Full text link
    We demonstrate the realization of nearly massless electrons in the most widely used device material, silicon, at the interface with a metal film. Using angle-resolved photoemission, we found that the surface band of a monolayer lead film drives a hole band of the Si inversion layer formed at the interface with the film to have nearly linear dispersion with an effective mass about 20 times lighter than bulk Si and comparable to graphene. The reduction of mass can be accounted for by repulsive interaction between neighboring bands of the metal film and Si substrate. Our result suggests a promising way to take advantage of massless carriers in silicon-based thin-film devices, which can also be applied for various other semiconductor devices.Comment: 4 pages, 4 figures, accepted for publication in Physical Review Letter

    Analysis of Oil Production Behavior for the Fractured Basement Reservoir Using Hybrid Discrete Fractured Network Approach

    Get PDF
    Unlike naturally fractured reservoir, fractured basement reservoir (FBR) has almost non-permeable matrix and flow is strongly dependent upon fracture network. This might cause the rapid changing behavior on oil production whether fracture near wellbore is saturated with either oil or water. In this aspect, realistic representation of fracture network is essential in FBR. Therefore the simulation of FBR is generally applied by dual-porosity (DP) continuum approach because discrete fractured network (DFN) simulator with multiphase flow is not commercially available except in-house model. In this paper, hybrid DFN approach is applied, which is continuum model coupled with local grid refinement (LGR). LGR is adapted at the cells which are passing through fractures, in order to represent fracture width less than 0.1 ft. Up to now, LGR is mostly used for well block rather than the fracture. In this approach, well control volume can not be described by LGR cell, thus, four-leg horizontal well concept substitutes the vertical well with the use of equivalent wellbore radius for overcoming the numerical convergence problem. The application of hybrid DFN approach for FBR is discussed about investigation of the possibility for drastic change on oil production. Based on the results, in fractured reservoir using hybrid DFN approach, oil production is not found to be proportional to the magnitude of matrix permeability, not as in porous system with dual-porosity approach. Also, we realized that oil production is once dropped it can not be recovered back to previous level in FBR. This is because oil-saturated fracture near well is once changed to water-saturated, then, there was not anymore changes occurred within the same fracture.Key words: Dual-porosity; Hybrid DFN; Fractured basement reservoir; Local grid refinemen
    corecore